David Hilbert (* 23. Januar 1862 in Königsberg; † 14. Februar 1943 in Göttingen) history menue Letztmalig dran rumgefummelt: 21.06.12 06:54:46

Kurt Friedrich Gödel (* 28. April 1906 in Brünn, Österreich-Ungarn, heute Brno, Tschechien; † 14. Januar 1978 in Princeton, New Jersey) war Mathematiker und einer der bedeutendsten Logiker des 20. Jahrhunderts. Er leistete maßgebliche Beiträge:
  • zur Prädikatenlogik – Vollständigkeit, Entscheidungsproblem in Arithmetik und axiomatischer Mengentheorie
  • zu den Beziehungen der intuitionistischen Logik sowohl zur klassischen Logik als auch zur Modallogik – sowie
  • zur Relativitätstheorie in der Physik.

Auch seine philosophischen Erörterungen zu den Grundlagen der Mathematik fanden weite Beachtung.

1. Kurt Gödel
2. Der "Kleine Gauß"
3. Lösungsalgorithmen
4. Programmvorschläge
5. Zusammenfassung
6. Weiterführende Literatur
7. Linkliste zum Thema
8. Verwandte Themen

Computergeschichte

Praktische Elementaralgorithmen

David Hilbert 1912

begrenzt verwendbar - selbst aufpassen, ab welcher Stelle es Blödsinn wird ;-)

Informatik-Profi-Wissen

Quellen:

LOG IN - Heft 146/147 (2007) Seite 47 ff.


1. Kurt Gödel history menue scroll up

Gödel stammte aus einer wohlhabenden großbürgerlichen Familie in Brünn in Mähren. Die Stadt Brünn hatte zur Geburtszeit Gödels eine deutschsprachige Bevölkerungsmehrheit und lag bis 1918 in der österreichisch-ungarischen Monarchie (heute: Tschechien). Seine Eltern waren Marianne (geb. Handschuh) und Rudolf August Gödel. Sein Vater war ein zu Wohlstand gelangter Textilunternehmer. Der Vater war katholisch, die Mutter evangelisch, die Kinder der Familie wurden evangelisch erzogen.
Gödel, der, verursacht durch rheumatisches Fieber, in seiner Kindheit oft unter einem schlechten Gesundheitszustand litt, zeigte trotzdem schulische Bestleistungen. 1912 trat Gödel in die Privat-Volks- und Bürgerschule ein, vier Jahre später in das deutschsprachige Kaiserliche und Königliche Staatsrealgymnasium. Nach dem Ersten Weltkrieg wurde die Stadt Brünn 1918/1919 Teil der neu gegründeten Tschechoslowakischen Republik. Gödel, der kaum Tschechisch sprach, fühlte sich in dem neu gegründeten Staat nicht heimisch und, wie er seinem späteren Biografen John D. Dawson sagte, wie ein „österreichischer Verbannter in Tschechoslowakien“. Er nahm 1923 die österreichische Staatsbürgerschaft an, zog zum Herbst 1924 nach Wien und schrieb sich dort zunächst im Studiengang für Theoretische Physik ein. Er beschäftigte sich im darauffolgenden Jahr hauptsächlich mit physikalischen Themen. Außerdem besuchte er die philosophische Vorlesung von Heinrich Gomperz sowie die Vorlesung über die Zahlentheorie von Philipp Furtwängler. Diese beiden Professoren gaben Gödel die entscheidenden Impulse, sich intensiv mit den Grundlagen der Mathematik auseinanderzusetzen, die auf der formalen Logik sowie der Mengenlehre beruhen.
Kurz nach Beginn seines Studiengangs begann er den Wiener Kreis zu besuchen, einen akademischen Zirkel, der von Moritz Schlick ins Leben gerufen worden war und sich mit den methodischen Grundlagen des Denkens und somit den Grundlagen jedweder Philosophie auseinandersetzte. Die Gespräche mit den anderen Mitgliedern der Gruppe, von denen insbesondere Hans Hahn, Karl Menger sowie Olga Taussky für Gödel von besonderer Bedeutung waren, führten ebenfalls zur Erweiterung seines mathematischen Wissens. Auch in familiärer Hinsicht waren die Treffen des Zirkels für ihn von Bedeutung, da er hier 1927 zum ersten Mal seine spätere Frau Adele Porkert traf. Als er im Juli 1928 mit seinem Bruder in eine neue Wohnung innerhalb Wiens, in die Florianigasse 42 (laut der Gedenktafel), zog, befand sich diese zufälligerweise direkt gegenüber der Wohnung von Adele Porkert. Bedingt durch diese Nachbarschaft gingen die beiden erst jetzt eine Beziehung ein, die allerdings durch Kurts Eltern aufgrund gesellschaftlicher Vorbehalte gestört wurde. Adele Porkert stammte aus kleinbürgerlichen Verhältnissen, arbeitete als Kabarettänzerin und war wenig gebildet. Sie war fast sieben Jahre älter als Gödel und bereits einmal verheiratet gewesen. Daher betrachteten Gödels Eltern die Beziehung als Mesalliance, was das Paar veranlasste, sie zunächst geheimzuhalten und erst 1938 nach dem Tod von Gödels Vater zu heiraten
 


2. Hintergründe, Zusammenhänge - Einordnung in Klassen history menue scroll up

Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten.
 
 


3. Lösungsalgorithmus history menue scroll up
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt).
 
 


4. Programmvorschläge history menue scroll up

Hannes Uhlig hat unser Vorschläge konsequent aufgegriffen und einschließlich der Problematik Oma und Katze ein Programm des Kaprekar-Algorithmus notiert, in welchem schon einige Kerngedanken eines sauberen - eben noch nicht objektorientierten Programmieirstils zusammenlaufen.
 
 


5. Zusammenfassung history menue scroll up

 
 
 
 


6. Weiterführende Literatur history menue scroll up

 
 
 
 


7. Links zum Thema history menue scroll up

 
http://www.mathematische-basteleien.de/kaprekarzahl.htm
 


8. Verwandte Themen history menue scroll up

Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft.

das 8-Dame-Problem

des Cliquen-Problem

Domino-Problem

das Entscheidbarkeitsproblem

das Erfüllbarkeitsproblem

die Fibonacci-Zahlen

das Flaggenproblem

das Halteproblem

das Hamilton-Problem

das K-Farben-Problem

der Kaprekar-Algorithmus

die Magischen Quadrate

das PASCAL'sche Dreiecksproblem

das Philosophenproblem

das Königsberger-Brückenproblem

das Post'schen Korrespondenzproblem

das Rundreiseproblem

das Springer-Problem

die Türme von Hanoi

das Wortproblem

das Wüstenfit-Problem

das 153-Problem

   

Worst-Case-Denken

Algorithmentheorie

Komplexität, Mächtigkeit und Aufwand

Praktische Elementaralgorithmen

Lösbarkeit und Problemlösungsstrategien

Klassische algorithmisch lösbare Probleme

Zufall und Computer

Graphentheorie

Petri-Netze

Informationsbegriff

Logo für die Signale

Nachrichten

Wissen

Systembegriff

Modellbegriff

Simulation

Denken und Sprache

Zahlen, Daten und Datentypen

Gegenläufigkeit und Verklemmung

Pattern-Matching

 



zur Hauptseite
© Samuel-von-Pufendorf-Gymnasium Flöha © Frank Rost am 21. Juni 2012 um 7.01 Uhr

... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-)

„Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“

Diddi Hallervorden, dt. Komiker und Kabarettist

Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-)