Das Hamiltonproblem history menue Letztmalig dran rumgefummelt: 08.07.22 17:38:38

Ein Hamiltonkreis ist ein geschlossener Pfad in einem Graphen, der jeden Knoten genau einmal enthält. Die Frage, ob ein solcher Kreis in einem gegebenen Graphen existiert, ist ein wichtiges Problem der Graphentheorie. Im Gegensatz zum leicht lösbaren Eulerkreisproblem, bei dem ein Kreis gesucht wird, der alle Kanten genau einmal durchläuft, ist das Hamiltonkreisproblem NP-vollständig.
Man unterscheidet das Gerichtete Hamiltonkreisproblem in gerichteten Graphen und das Ungerichtete Hamiltonkreisproblem in ungerichteten Graphen. Eine Verallgemeinerung des Hamiltonkreisproblems ist das Problem des Handlungsreisenden, bei dem nach einem kürzesten Hamiltonkreis in einem Graphen mit Kantengewichten gefragt wird.
Namensgeber des Problems ist der irische Astronom und Mathematiker Sir William Rowan Hamilton, der 1857 das Spiel „The Icosian Game“ erfand (und später verbesserte zum „Traveller's Dodecahedron or A Voyage Round The World“).
Der „Traveller's Dodecahedron“ besteht aus einem hölzernen, regulären Dodekaeder, wobei die 20 Knoten mit Namen bekannter Städte assoziiert sind. Ziel ist es, eine Reiseroute entlang der Kanten des Dodekaeders zu finden, die jede Stadt genau einmal besucht und dort aufhört, wo sie beginnt.
Zunächst erscheint die Aufgabenstellung ähnlich dem 1736 von Leonhard Euler (verneinend) gelösten Königsberger Brückenproblem, einem Spezialfall des Eulerkreisproblems und Grundsteinlegung der Graphentheorie. Während für das Eulerkreisproblem aber besonders effiziente Lösungs-Algorithmen existieren, ist bekannt, dass beide Varianten des Hamiltonkreisproblems besonders schwer algorithmisch lösbare Probleme sind. Sowohl die gerichtete als auch die ungerichtete Variante des Hamiltonkreisproblems gehört zur Liste der 21 klassischen NP-vollständigen Probleme, für die Richard M. Karp 1972 in seinem berühmten Artikel die Zugehörigkeit zu dieser Klasse von Problemen nachgewiesen hat.

Wikipaedia

1. Problembeschreibung
2. Hintergründe und Zusammenhänge - Einordnung in Klassen
3. Lösungsalgorithmen
4. Programmvorschläge
5. Zusammenfassung
6. Weiterführende Literatur
7. Linkliste zum Thema
8. Verwandte Themen

Probleme & Problemlösungsverfahren

Logo für das Hamiltonproblem

Informatik-Profi-Wissen

Quellen:


1. Problembeschreibung history menue scroll up

 
 


2. Hintergründe, Zusammenhänge - Einordnung in Klassen history menue scroll up

Vom Vortrag bis zur Lösungskonzeption - alles drin - Paul Horlers Komplexe Leistung im Fach Informatik im Schuljahr 2021/2022. Das Projekt zeigt auf, wie komplex eine Lösungssuche ganz landläufiger informatischer Aufgabenstellungen sein kann.
der Vortrag mit Basiswissen das Programm Arbeitsblatt 1 Arbeitsblatt 2 Arbeitsblatt 3

... der Vortrag

... das Programm

Download Arbeitsblatt 1

Download Arbeitsblatt 2

Download Arbeitsblatt 3


3. Lösungsalgorithmus history menue scroll up
 
Nun ist dieser Quelltext in PASCAL schlecht anschaulich, deswegen werde ich den gesuchten Algorithmus graphisch darstellen. Dazu muss aber folgendes klar sein:
  • die Fächerreihe wird von rechts nach links bearbeitet:
  • es wird immer nur die Farbe des Steinchens bestimmt, auf welches Marke w zeigt
  • zeigt Marke w auf ein rotes Steinchen, dann wird das Steinchen bei Marke w mit dem Steinchen bei Marke r getauscht; als zweites wird Marke r eine Stelle nach rechts gerückt
  • zeigt Marke w auf ein weißes Steinchen, dann wird nur Marke w eine Stelle nach links gerückt
  • zeigt Marke w auf ein blaues Steinchen, dann wird das Steinchen bei Marke w mit dem Steinchen bei Marke b getauscht; als zweites werden Marke w und Marke b eine Stelle nach links gerückt

 


4. Programmvorschläge history menue scroll up

 
 


5. Zusammenfassung history menue scroll up

 
 


6. Weiterführende Literatur history menue scroll up

 
der Lösungsalgorithmus der Türme von Hanoi ist nicht komplex, jedoch schon mit geringer Anzahl n mächtig


7. Links zum Thema history menue scroll up

 
 


8. Verwandte Themen history menue scroll up

Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft.

das 8-Dame-Problem

des Cliquen-Problem

Domino-Problem

das Entscheidbarkeitsproblem

das Erfüllbarkeitsproblem

die Fibonacci-Zahlen

das Flaggenproblem

das Halteproblem

das K-Farben-Problem

der Kaprekar-Algorithmus

die Magischen Quadrate

das PASCAL'sche Dreiecksproblem

das Philosophenproblem

das Königsberger-Brückenproblem

das Post'schen Korrespondenzproblem

das Rucksackproblem

das Rundreiseproblem

das Springer-Problem

die Türme von Hanoi

das Wortproblem

das Wüstenfit-Problem

Worst-Case-Denken

Algorithmentheorie

Komplexität, Mächtigkeit und Aufwand

Praktische Elementaralgorithmen

Lösbarkeit und Problemlösungsstrategien

Klassische algorithmisch lösbare Probleme

Zufall und Computer

Graphentheorie

Petri-Netze

Informationsbegriff

Logo für die Signale

Nachrichten

Wissen

Systembegriff

Modellbegriff

Simulation

Denken und Sprache

Zahlen, Daten und Datentypen

Gegenläufigkeit und Verklemmung

Pattern-Matching

 



zur Hauptseite
© Samuel-von-Pufendorf-Gymnasium Flöha © Frank Rost im April 2003

... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-)

„Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“

Diddi Hallervorden, dt. Komiker und Kabarettist

Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-)