

Designing with the Agilent HDSP-211x Smart Display Family Application Note 1033

Introduction

Agilent Technologies' smart alphanumeric display, the HDSP-211x, is built to optimize the user's display design. Each HDSP-211x has an on-board CMOS IC which displays eight alphanumeric characters. The CMOS IC consists of an eight byte Character RAM, an 8 bit Flash RAM, a 128 character ASCII decoder, a 16 symbol User-Defined Character (UDC) RAM, a UDC Address Register, a Control Word Register and the refresh circuitry necessary to synchronize the decoding and driving of eight 5 x 7 dot matrix characters. Designers should treat the HDSP-211x as a RAM, whose purpose is to store and display a combination of ASCII characters, UDC symbols and control information.

This application note is intended to serve as a design and application guide for users of the HDSP-211x. The user is assumed to be familiar with the HDSP-211x data sheet or to have a copy available. The information presented will cover interfacing the HDSP-211x to either a Motorola 6808 or an Intel 8085 microprocessor. The 6808 and 8085 microprocessors have been selected as typical 8 bit microprocessors. The 6808 has a single R/\overline{W} line and does not multiplex the address and data bus. The 8085 has separate Read and $\overline{\text{Write}}$ lines and does multiplex the address and data

lines. These approaches may be used with most microprocessor systems. Different length display systems may be created with simple modifications to the hardware and software described in this application note.

6808 Hardware Interface The circuit in Figure 1 illustrates how to interface an HDSP-211x to a Motorola 6808 microprocessor. The display interfaces directly to the 6808 bus with the addition of a 74LS138 decoder and a 74LS373 transparent latch.

The 74LS138 is used to generate individual Chip Enables for each of the HDSP-211x displays. These Chip Enables are generated by ANDing a combination of the higher order address bits (A_8 , A_9 , and A_{10}) with E and VMA. Based on the circuit shown in Figure 1, the displays are memory mapped at locations 0400h, 0500h, 0600h and 0700h. Since the address bus is only partly decoded, other address combinations can also access the display.

The 74LS373 is used to generate the address information for the HDSP-211x displays. The 74LS373 is used to hold this address information stable after the Chip Enable goes high. VMA and E are used to gate the latch enable to ensure that valid address information is stored in the latch.

Figure 2 shows how the six low order address lines are connected to the display. The latch outputs corresponding to microprocessor outputs A_0 - A_4 are connected to the same display address inputs. The output corresponding to A_5 is connected to the display FL input. Thus each display requires 64 bytes of memory space.

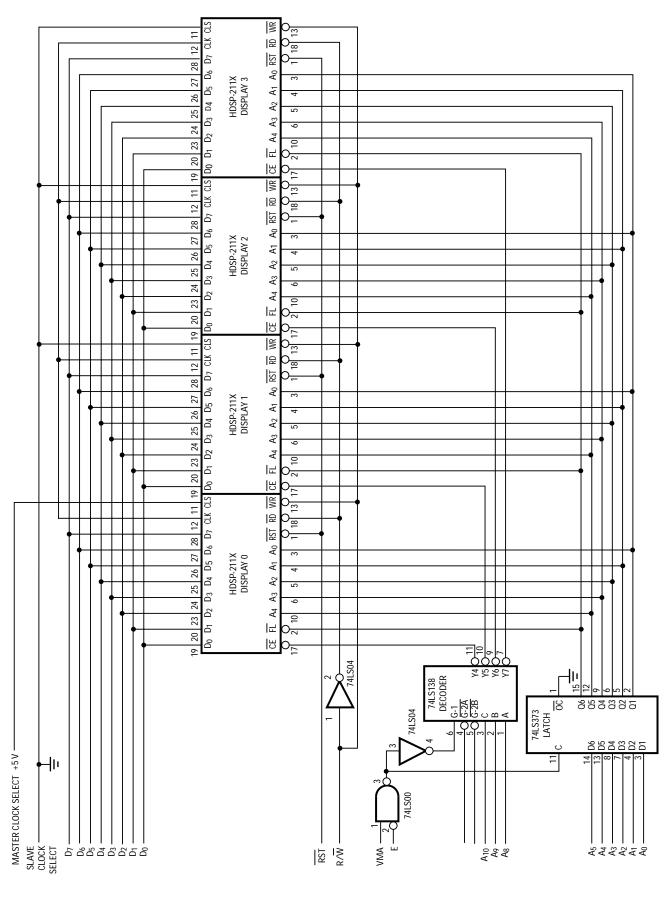


Figure 1. 32 Character Interface to 6808 Microprocessor

A_5	A_4	A_3	A ₂	A ₁	A ₀	Microprocessor Address line
FĹ	A_4	A_3	A ₂	A ₁	A ₀	Display Inputs
0	Х	Х	0	0	0	Flash RAM
0	Х	Х	1	1	1	Flash RAM
1	0	0	Х	Х	Х	UDC Address Register
1	0	1	0	0	0	UDC RAM
1	0	1	1	1	0	UDC RAM
1	0	1	1	1	1	Ignored
1	1	0	Х	Х	Х	Control Word Register
1	1	1	0	0	0	Character RAM
1	1	1	1	1	1	Character RAM

LeftMost Digit of the Display RightMost Digit of the Display

Top Row Bottom Row

LeftMost Digit of the Display RightMost Digit of the Display

Figure 2. Mapping of the Lower Order Microprocesor Address Lines

Separate Read and Write signals are generated for the display by using an inverter on the microprocessor R/\overline{W} output. Although the display read function is selected even when the display is not addressed, since the Chip Enable is high, the display data lines are tristated. Information is passed on the microprocessor data bus, D₀-D₇, to the display data lines, D₀-D₇, when either the Read or the Write input is held low and the display Chip Enable is held low.

The Reset, Clock I/O and Clock Select lines are used to synchronize systems with multiple displays. The circuit is drawn so that the clock of the first display is the master clock for the other displays. The Reset lines are connected to make a display master reset. The displays will be synchronized after the system has been reset by holding the master reset low for at least 300 ns.

The display system may be lengthened by adding HDSP-211x displays and connecting the display pins to the appropriate microprocessor pins. The Chip Enable pin has to be connected to an unused output from the 74LS138 decoder. The display system can be shortened by removing HDSP-211x displays from the system.

Software Interface

The HDSP-211x is easy to program. There are five blocks (Control Word register, UDC Address register, UDC RAM, Flash RAM, and Character RAM) within the IC which influence the operation of the display. The designer can control the operation of these blocks through his software program. The recommended sequence to program these blocks is to set the programmable features (Control Word register); store the custom characters (UDC Address register and UDC RAM); set the individual characters to be flashed (Flash RAM); and load the message to be displayed (Character RAM). Using this sequence ensures that the message appears on the display as expected. Described in the following paragraphs are a series of software programs written to load custom characters into the UDC RAM and to load ASCII text into the Character RAM. This sequence can be encoded using a main program and two

subroutines. One subroutine is used to load custom characters from a table to the display UDC RAM. The other subroutine is used to load character data from another table to the display Character RAM.

To program each display it is necessary to know the address of each block within each display. Figure 3 shows the address locations and the labels associated with each block for the 32 character addressing schemes shown in Figure 1 and 15. A₆ and A₇ are not decoded so each display occupies 256 bytes of memory. The display is memory mapped at location XXYY hex. The most significant byte, XX, is the HDSP-211x location and the least significant byte, YY, is the location of a block within the display. The four displays are located at memory locations 04YYh, 05YYh, 06YYh, and 07YYh, where 04YYh is the location of the leftmost display and 07YYh is the location of the rightmost. Flash RAM data is stored from location XX00H to location XX07h, where XX00h is associated with the leftmost character of a display and XX07h is the rightmost character of a display. The UDC Address register is located in

DISPOFLEQU0400hFlash RAM Display 0DISP1FLEQU0500hFlash RAM Display 1DISP2FLEQU0600hFlash RAM Display 2DISP3FLEQU0700hFlash RAM Display 3DISP0UAEQU0420hUDC Addr. Reg Display 0
DISP2FLEQU0600hFlash RAM Display 2DISP3FLEQU0700hFlash RAM Display 3DISP0UAEQU0420hUDC Addr. Reg Display 0
DISP3FLEQU0700hFlash RAM Display 3DISP0UAEQU0420hUDC Addr. Reg Display 0
DISP1UA EQU 0520h UDC Addr. Reg Display 1
DISP2UA EQU 0620h UDC Addr. Reg Display 2
DISP3UA EQU 0720h UDC Addr. Reg Display 3
DISPOUD EQU 0428h UDC RAM Display 0
DISP1UD EQU 0528h UDC RAM Display 1
DISP2UD EQU 0628h UDC RAM Display 2
DISP3UD EQU 0728h UDC RAM Display 3
DISP0CW EQU 0430h Control Word Display 0
DISP0CW EQU 0530h Control Word Display 1
DISP0CW EQU 0630h Control Word Display 2
DISP0CW EQU 0730h Control Word Display 3
DISP0CH EQU 0438h Character RAM Display 0
DISP1CH EQU 0538h Character RAM Display 1
DISP2CH EQU 0638h Character RAM Display 2
DISP3CH EQU 0738h Character RAM Display 3

Figure 3. Address Locations and Labels Associated with each block in a 32 Character Message System

SOURCE STA	TEMENTS		COMMENTS
DISPLOAD	EQU	0100h	Displays 32 char. Message
UDCLOAD	EQU	0200h	Subroutine to load UDC RAM
TABLEDOT	EQU	0820h	Dot Information for UDC RAM
DISPLAY	EQU	0000h	Subroutine to load Char, RAM
CHAR	EQU	0300h	32 Character Message
			•

Figure 4. Location and Labels for the Main Program, Subroutines and Data

location XX20h. The top row of the UDC RAM is located at location XX28h and the bottom row at location XX2Eh. The Control Word register is located XX30h. Character data is stored from XX38h to XX3Fh, where XX38h is the leftmost character of the display and XX3Fh is the rightmost character of the display.

Figure 4 shows the location and labels for the main program, subroutines and data. DISPLOAD is the main program which calls and passes information to the subroutines. UDCLOAD is a subroutine which loads 16 Custom Characters into one HDSP-211x. TABLEDOT is the location of the top row of the first UDC symbol. DISPLAY is a subroutine which loads the Character RAM of one HDSP-211x. CHAR is the location of the leftmost character in the message. 6808 UDCLOAD Subroutine **Temporary Memory** Figure 5 shows four memory UDCDATAT stores the location of locations that are used for the first character in TABLEDOT temporary storage by the (0820h) for the UDCLOAD UDCLOAD subroutine. Three subroutine. The content of locations are used to store UDCDATAT will be 088Fh when information passed from the main the subroutine has finished program to the subroutine. The execution. fourth is used as an internal counter. COUNT is used by the UDCLOAD to keep track of which character UDCADDR stores the memory is being loaded into the UDC location of the UDC Address RAM. The user does not need to register (XX20h) for the initialize COUNT prior to UDCLOAD subroutine. The executing UDCLOAD. content of UDCADDR will be XX20h when the subroutine

UDCRAMR stores the memory location of the top row of the UDC RAM (XX28h) for the UDCLOAD subroutine. The content of the UDCRAMR will be XX28h when the sub-routine finishes executing.

finishes execution.

LOC		ORG	\$0250h	
0250	UDCADDR	RMB	2	UDC Address Register Data
0252	COUNT	RMB	1	UDC pointer
0253	UDCDATAT	RMB	2	UDC dot data
0255	UDCRAMR	RMB	2	UDC row

Figure 5. Memory Location Used to Pass Information from the Main Program to the Subroutines

6808 UDCLOAD Subroutine Figure 6 shows the program inner loop, labeled NROW, is listing for the UDCLOAD executed seven times for each subroutine. This routine transfers execution of NUDC. NROW loads UDC dot data from main memory data into the UDC RAM row by to one display UDC RAM. Two row starting with the top row and loops are used to load the UDC ending with the bottom row. RAM. The outer loop, labeled Three pieces of information are NUDC, is repeated 16 times, one passed to the subroutine. They time for each UDC RAM location. are the memory locations of the COUNT is used to keep track of UDC Address register the number of times NUDC has (UDCADDR), the UDC RAM been executed. NUDC loads the (UDCRAMR) and the UDC data UDC Address register with the table (UDCDATAT). address of a UDC symbol. The

Memory table "TABLEDOT" is organized as shown in Figure 7. Each of the 16 symbols is specified in a block of seven memory locations. The first symbol is stored in UDC RAM location 0 hex and the last symbol is stored in UDC RAM location F hex. The first location within a block is the top row of a symbol and the last location in a block is the bottom row.

LOC OBJECT COD 0200 C6 00 UD	E ORG CLOAD LDA B	\$0200h 3 I,\$00	
0202 FE 0250 NU 0205 E7 00 0207 5C	DC LDX STA B INC B		Load UDC Address Register with pointer
0208 F7 0252 020B C6 00	STA B LDA B		Store character counter Load row counter
020D FE 0253 NR 0210 A6 00	OW LDX LDA A	E,UDCDATAT A X,\$00	Load Accumulator A with dot data
0212 08 0213 FF 0253	INX STX	E,UDCDATAT	Store address of next dot data
0216 FE 0255 0219 A7 00	LDX STA A	E,UDCRAMR A X,\$00	Store dot data in UDC RAM
021B 08 021C FF 0255 021F 5C	INX STX INC B	E,UDCRAMR	Last row of character? No — get next row.
0220 C1 07 0222 26 E9	CMP B BNE		Yes — adjust UDCRAMRT to top row of char
0224 F6 0256 0227 CO 07 0229 F7 0256	LDA B SUB B STA B	B 1,\$07	
022C F6 0252 022F C1 10 0231 26 CF	LDA B CMP B BNE		Last character? No — load next character. Yes — return
0233 39	RTS		

Figure 6. Subroutine to Load the UDC RAM with Custom Symbols

MEMORY LOCATION	UDC CHARACTER	ROW
0820 0821	0h 0h	1 2
0827	0h	7
: 0889 088F	Fh Fh	1 7

Figure 7. Organization of UDC Data to be used with the UDCLOAD Routine

		1	2	3	4	5		
MEMORY	HEX	D4	D3	D2	D1	D0		Oh UDC
LOCATION	DATA							CHARACTER
0820	08	0	1	0	0	0	ROW 1	*
0821	04	0	0	1	0	0	ROW 2	*
0822	02	0	0	0	1	0	ROW 3	*
0823	04	0	0	1	0	0	ROW 4	*
0824	08	0	1	0	0	0	ROW 5	*
0825	00	0	0	0	0	0	ROW 6	
0826	1F	1	1	1	1	1	ROW 7	* * * * *

0 = logic 0; 1 = logic 1; * = illuminated LED

Figure 8. Data to load " ≥ " into the UDC RAM

Figure 8 shows how a greater than or equal to, "≥", sign can be created as a UDC symbol. Executing the UDCLOAD subroutine with 0420h stored at UDCADDR, 0428h stored at UDCRAMR and 0820 stored at UDCDATAT will cause the "≥" sign to be stored in of the leftmost display UDC RAM location 0h. The subroutine will also load the fifteen other UDC RAM locations. To display this symbol, 80 hex has to be stored in the Character RAM of the leftmost display.

6808 Display Subroutine Temporary Memory

Figure 9 shows two memory locations which are used for temporary storage by the DISPLAY subroutine.

TABLECH stores the memory location of the leftmost character of the message (0300h) to be displayed for the DISPLAY subroutine. After the execution of DISPLAY, the value stored in TABLECH will have been incremented by 8. Thus, for systems consisting of multiple HDSP-211xs, TABLECH needs to be initialized only for the leftmost display. DISPL stores the memory location of the Character RAM (XX38h) for the DISPLAY subroutine. The contents of DISPL will be XX3F when the subroutine finishes execution.

> 0257 TABLECH 0259 DISPL

RMB 2 Character pointer RMB 2 Character RAM address

Figure 9. Memory Location used to pass information from the Main Program to the Subroutines

6808 Display Subroutine	
Figure 10 shows the program	n
listing for the DISPLAY	S
subroutine. This routine transfers	H
character data from main memory	r
to the Character RAM of one	8
display. The program loads all 8	F
Character RAM locations by	0
executing the loop labeled	
"NCHAR" 8 times. The leftmost	
character is loaded first and the	
rightmost is loaded last. Two	
pieces of information are passed	
to the subroutine. They are the	
location of the Character RAM	
(DISPL) and the location of the	

message (TABLECH). For display systems using more than one HDSP-211x, the subroutine will remember the location of the next 8 byte block of the message. Figure 11 shows the organization of a 32 character message.

LOC OBJECT CODE	ORG	\$(0000	
0000 C6 08 DISPLAY	LDA	В	1, \$08	
0002 FE 0257 NCHAR	LDX		E, TACLECH	Load character into
0005 A6 00	LDA	Α	X,\$00	Accumulator A
0007 08	INX			Set pointer to address of next
0008 FF 0257	STX		E, TABLECH	character
000B FE 0259	LDX		E,DISPL	Store character in display
000E A7 00	STA	Α	X,\$00	Character RAM
0100 08	INX			Set display address to next
0011 FF 0259	STX		E,DISPL	location
0014 5A	DEC	В		End of Display? NO — get next
0015 C1 00	CMP	В	1,\$00	character. Yes — return to main
0017 26 E9	BNE		NCHAR	program.
0019 39	RTS			

Figure 10. Subroutine to Load Character RAM

MEMORY LOCATION	DISPLAY ADDRESS
0300	0438
0307	043F
0308	0538
•	
;	
:	
031F	073F

Figure 11. Organization of a 32 Character Message used with the Display Routines

Figure 12 shows how a 32 character message is stored in memory for use with the DISPLAY subroutine. Figure 13 shows how this message will look after executing the DISPLOAD program.

6808 DISPLOAD Program

Figure 14 shows listing of the DISPLOAD program. This program loads the UDC RAMs of four HDSP-211x displays and displays a 32 character message. The UDCLOAD subroutine is executed four times to load the UDC RAMs of all displays. The DISPLAY subroutine is executed four times to load a 32 character message.

MEMORY	ASCII	ASCII	DISPLAY
LOCATION	DATA	CHARACTER	ADDRESS
0300	54	т	0438
0301	68	h	0439
0302	69	i	043A
0303	73	S	043B
0304	20	(space)	043C
0305	73	s	043D
0306	68	h	043E
0307	6F	0	043F
0308	77	w	0538
0309	73	S	0539
030A	20	(space)	053A
030B	63	С	053B
030C	75	u	053C
030D	73	S	053D
030E	74	t	053E
030F	6F	0	053F
0310	6D	m	0638
0311	20	(space)	0639
0312	63	С	063A
0313	68	h	063B
0314	61	а	063C
0315	72	r	063D
0316	61	а	063E
0317	63	с	063F
0318	74	t	0738
0319	65	е	0739
031A	72	r	073A
031B	73	S	073B
031C	20	(space)	073C
031D	80	≥	073D
031E	21	Į	073E
031F	20	(space)	073F

Figure 12. ASCII Data Stored in Memory for use by the Display Routine

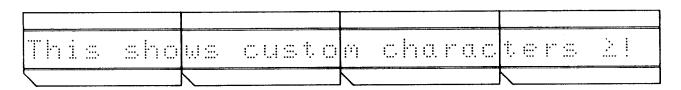


Figure 13. 32 Character Message

The DISPLOAD program is written to load the UDC RAM and display a message. For each display in the system, the UPCLOAD subroutine must be executed once per display to load the UDC RAM. To display a

message, the DISPLAY subroutine has to be executed once for each display in the system. The UDC RAM of each display in the system has to be loaded with UDC data before the first DISPLAY subroutine is executed.

LOC OBJ	ECT CODE ORG	a \$0	100	
0100 CE	0420 DISPLOAD LI		I,DISPOUA	
0103 FF	0250 S ⁻	тх	E,UDCADDR	71
0106 CE	0428 LI	DX	I, DISPOUD	
0109 FF	0255 S ⁻	тх	E,UDCRAMR	
010C CE	0820 LI	DX	I, TABLEDOT	
010F FF	0253 S ⁻	тх	E,UDCDATAT	Load leftmost Display
0112 BD	0200 JS	SR	E,UDCLOAD	UDC RAM
0115 CE	0520 LI	DX	I,DISP1UA	
0118 FF		тх	E,UDCADDR	
011B CE		DX	I,DISP1UD	
011E FF		тх	E,UDCRAMR	
0121 CE		DX	I,TABLEDOT	
0124 FF		ТХ	E,UDCDATAT	
0127 BD	0200 JS	SR	E,UDCLOAD	
012A CE		DX	I,DISP2UA	
012D FF		TX	E,UDCADDR	
0130 CE		DX	I,DISP2UD	
0133 FF		TX		
0136 CE		DX	I,TABLEDOT	
0139 FF		STX SR	E,UDCDATAT	
013C BD			E,UDCLOAD	
013F CE		DX	I,DISP3UA	
0132 FF 0135 CE		TX DX	E,UDCADDR I,DISP3UD	
0135 CE 0138 FF		TX	E,UDCRAMR	
0138 FF		DX	I,TABLEDOT	
0138 FF		TX	E,UDCDATAT	Load rightmost Display
0141 BD		SR	E,UDCLOAD	UDC RAM
0144 CE		DX.	I,CHAR	
0144 CE 0147 FF		STX	E,TABLECH	
0147 TT		.DX	I,DISPOCH	
014D FF		TX	E,DISPL	Load leftmost Display
0150 BD		SR	E,DISPLAY	Character RAM
0153 CE	0300 L	DX	I,DISP1CH	
0156 FF		ТХ	E,DISPL	
0159 BD		SR	E,DISPLAY	
015C CE	0638 L	.DX	I, DISP2CH	
015F FF		STX	E.DISPL	
0162 BD		SR	E,DISPLAY	
0165 CE		.DX	I,DISP3CH	
0163 CE		STX	E,DISPL	Load rightmost Display
016B BD		SR	E,DISPLAY	Character RAM
	0000 0	0.1		

Figure 14. Main Program to Call UDCLOAD and DISPLAY Subroutines

8085 Hardware Interface

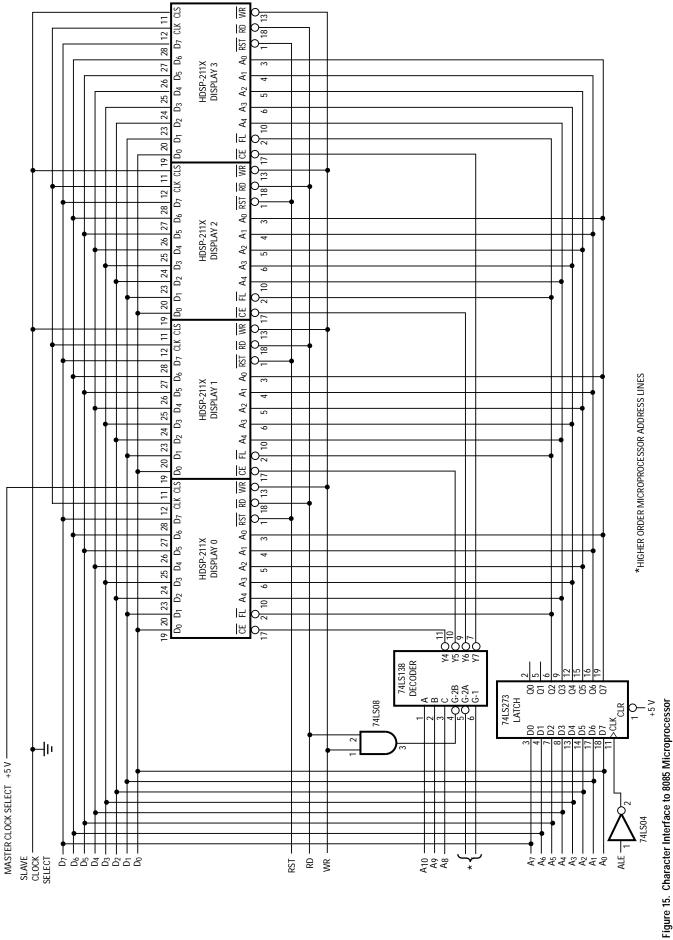
The circuit in Figure 15 shows how to interface an HDSP-211x to an INTEL 8085 microprocessor. The display interfaces directly to the 8085 bus with the addition of a 74LS138 decoder.

The 74LS138 is used to generate individual Chip Enables for each of the HDSP-211x displays. These Chip Enables are created by decoding the higher order address bits (A_8 , A_9 , and A_{10}). Based on the circuit shown in Figure 15, the displays are memory mapped at location 04YYh, 05YYh, 06YYh and 07YYh. Since the address bus is only partly decoded, other address combinations can also access the display.

Figure 2 shows how the six lower order microprocessor address lines are connected to the display. Each display uses 64 memory locations. The display Address inputs must be held stable after the Chip Enable signal goes high. The 8085 multiplexes A₀-A₇ and D_0 - D_7 on the same bus. A latch is required to isolate A₀-A₇ from D₀-D₇. This latch provides the necessary hold time. The latch outputs corresponding to microprocessor outputs A_0 - A_4 are connected to the same display Address inputs. The output corresponding to A₅ is connected to the display FL input.

The 8085 has separate Read and Write lines which are connected directly to the display Read and Write lines. Information is passed on the microprocessor data bus, D_0 - D_7 , to the display data lines, D_0 - D_7 , when either the Read or the Write input is held low and the display Chip Enable is held low.

The Reset, Clock I/O and Clock Select lines are used to synchronize systems with multiple displays. The circuit is drawn so that the clock of the first display is the master clock for the other displays. The Reset lines are connected to make a display master reset. The display will be synchronized after the system has been reset by holding the master reset low for at least 300 ns.


8085 UDCLOAD Subroutine

Temporary Storage Three register pairs are used for temporary storage by the UDCLOAD subroutine. The registers are used to store information passed from the main program to the subroutine.

Register pair B&C stores the memory location of the UDC Address register (XX20h) for the UDCLOAD subroutine. The content of register pair B&C will be XX20h when the subroutine finishes execution.

Register pair H&L stores the memory location of the top row of the UDC RAM (XX28h) for the UDCLOAD subroutine. The content of register pair H&L will be XX28h when the subroutine finishes execution. Register pair D&E stores the location of the first character in TABLEDOT (0820h) for the UDCLOAD subroutine. The content of register pair D&E will be 088Fh when the subroutine finishes execution.

COUNT is used by the UDCLOAD to keep track of which character is being loaded into the UDC RAM. The user does not need to initialize COUNT prior to executing UDCLOAD.

8085 UDCLOAD Subroutine

Figure 16 shows the program listing for the UDCLOAD subroutine. Three pieces of information are passed to the subroutine. They are the memory locations of the UDC Address register (B&C), the UDC RAM (H&L), and the data (D&E). For a detailed explanation of the UDCLOAD subroutine see the selection labeled 6808 UDCLOAD SUBROUTINE.

8085 Display Subroutine Temporary Memory

Two register pairs are used for temporary storage by the DISPLAY subroutine.

Register pair H&L stores the memory location of the Character RAM (XX38h) for the DISPLAY subroutine. The content of register pair H&L will be XX3Fh after the subroutine finishes execution.

Register pair D&E stores the memory location of the leftmost character of the message (0300h) to be displayed for the DISPLAY subroutine. After the execution of DISPLAY, the value stored in D&E will have been incremented by 8. Thus, for systems consisting of multiple HDSP-211xs, H&L needs to be initialized only for the leftmost display character.

LOC	OBJE	CTC	ODE	ORG	\$0200h
0200	3E	00	UDCLOAD	MVI	\$00
0202	02		NUDC	STAX	В
0203	3C			INR	А
0204	32	0252		STA	COUNT
0207	0A		NROW	LDAX	D
0208	13			INX	D
0209	77			MOV	M,A
020A	23			INX	Н
020B	7D			MOV	A,L
020C	3C	07		ADI	\$07
020E	FE	07		CPI	\$07
0210	C2	0702		JNZ	NROW
0213	7D			MOV	A,L
0214	D6	07		SUI	\$07
0216	6F			MOV	L,A
0217	3A	0252		LDA	COUNT
0218	FE	10		CPI	\$10
021A	C2	0202		JNZ	NUDC
021D	C9			RET	

Load UDC Address Register with pointer

Load Accumulator with dot data

Store dot data in UDC RAM

Last row? No — get Next row Yes — adjust L register to top row of character

Last character? No go to NUDC Yes return

Figure 16. Subroutine to Load the UDC RAM with Custom Symbols

8085 Display Subroutine Figure 17 shows the program listing for the DISPLAY subroutine. Two pieces of information are passed to the subroutine. They are the location of the Character RAM (H&L) and the location of the message (D&E). For a detailed explanation of the DISPLAY subroutine see the section labeled 6808 DISPLAY SUBROUTINE.

LOC 0100	OBJE 06	ECT C 00	ODE DISPLAY	ORG MVI	\$0100 B, \$00
0102	1A		NCHAR	LDAX	D
0103	77			MOV	M,A
0104	13			INX	D
0105	23			INX	Н
0106	04			INR	B
0107	78			MOV	A,B
0108	FE	08		CPI	\$08
010A	C2	0201		JNZ	NCHAR
010D	C9			RET	

Load Accumulator with character data Store data in Character RAM Next character data location Next character RAM location

Last character? No — go to NEXT Yes — return

Figure 17. Subroutine to Load Character RAM

8085 DISPLOAD Program

Figure 18 shows listing of the DISPLOAD program. This program loads the UDC RAMs of four HDSP-211x displays and displays a 32 character message. The UDCLOAD subroutine is executed four times to load the UDC RAMs of all displays. The DISPLAY subroutine is executed four times to load a 32 character message.

The DISPLOAD program is written to load the UDC RAM and display a message. For each display in the system, the UDCLOAD subroutine must be executed once per display to load the UDC RAM. To display a message, the DISPLAY subroutine has to be executed once for each display in the system. The UDC RAM of each display in the system has to be loaded with UDC data before the first DISPLAY subroutine is executed.

	01 11 21	CT C0 0420 0820 0428 0200	DDE DISPLOAD	ORG LXI LXI LXI CALL	\$0000 B,DISP0UA D,TABLEDOT H,DISP0UD UDCLOAD
000C 000F 0012 0015	11 21	0520 0820 0528 0200		LXI LXI LXI CALL	B,DISP1UA D,TABLEDOT H,DISP1UD UDCLOAD
0018 001B 001E 0021	21	0620 0820 0628 0200		LXI LXI LXI CALL	B,DISP2UA D,TABLEDOT H,DISP2UD UDCLOAD
0024 0027 002A 002D	11 21	0720 0820 0728 0200		LXI LXI LXI CALL	B,DISP3UA D,TABLEDOT H,DISP3UD UDCLOAD
0030 0033 0036	21	0300 0438 0100		LXI LXI CALL	D,CHAR H,DISP0CH DISPLAY
0039 003C		0538 0100		LXI CALL	H,DISP1CH DISPLAY
003F 0042		0638 0100		LXI CALL	H,DISP2CH DISPLAY
0045 0048		0738 0100		LXI CALL	H,DISP3CH DISPLAY

Figure 18. Main Program to Call UDCLOAD and DISPLAY Subroutines

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (408) 654-8675 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 271 2451 India, Australia, New Zealand: (+65) 271 2394 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (+65) 271 2194 Malaysia, Singapore: (+65) 271 2054 Taiwan: (+65) 271 2654 Data subject to change. Copyright © 2002 Agilent Technologies, Inc. Obsoletes 5954-8424 February 4, 2002 5988-5632EN

Agilent Technologies